

END VIEW OF REACTOR SHOWING PRINCIPAL CALANDRIA DIMENSIONS, FUEL CHANNELS AND BOUNDARY OF INNER FUEL ZONE

Figure 1.3 Number of Collisions and Energy Loss per Collision During Moderation

EFFECT OF MODERATOR ON NEUTRON ENERGY DURING SLOWING-DOWN

L

Moderator	Number of Collisions
Н	18
D	25
Не	43
Li	67
Be	86
С	114

Fig. 1.4 - Number of Collisions to Thermalize a 2-MeV Neutron

Figure 1.5 Moderating Ratio of Various Moderators

Moderator	Moderating Ratio
Light Water	62
Carbon (Graphite)	165
Heavy Water	5000

Figure 1.6 Various Fuel-Designs

Popular	N.P.D.	N.P.D. & DOUGLAS PT.
Number of Rods/Bundle	7	19 19
Rod Diameter mm	25.4	15.25 15.22 221 420
Mass Ratio UO ₂ /Zircaloy	11.1	10.2 10.1

-

	PICKERING	BRUCE & 600 MW
Number of Rods/Bundle Rod Diameter mm Nominal Bundle Power kW Mass Ratio UO ₂ /Zircaloy	23 15.19 640 11.1	37 37 13.08 13.08 900 800 94 9.4

Figure 1.8 Basic Characteristics of CANDU

- Use of heavy water as moderator: maximizes neutron economy
- Pressure-tube construction: allows
 - low-pressure calandria
 - low-pressure, low-temperature environment in moderator for reactivity devices
- On-power refuelling:
 - removes the need for refuelling shutdowns
 - allows reactor operation with small average excess reactivity

